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Abstract—The common FGHI-ring part (2) of ciguatoxins has been synthesized from the F- and I-ring parts (6 and 5, respectively).
The Nozaki–Hiyama–Kishi coupling of 6 with 5 followed by regio- and stereoselective epoxidation at C29 and C30 afforded an
epoxide (4), which was transformed into a tricyclic compound (3) corresponding to the F-HI-ring part by 6-exo-epoxide opening
and the subsequent inversion of the C29 stereocenter. Reductive cyclization of 3 forming the C31–O26 bond of the G-ring success-
fully produced 2.
� 2005 Elsevier Ltd. All rights reserved.
Ciguatoxins,1 characterized by potent neurotoxicity due
to strong activation of the voltage-sensitive sodium
channels (VSSC),2 were isolated as causative toxins of
ciguatera fish poisoning.3 They have a ladder-shaped
trans-fused polyether structure including 13 medium
rings, such as ciguatoxin CTX3C (1)1a shown in Scheme
1. Since the structural complexity and the strong bioac-
tivity have attracted the attention of chemists, ciguatox-
ins have been studied extensively in the synthetic view
point.4,5 So far, in the course of our program toward
total synthesis of ciguatoxins,6 we reported the syntheses
of the ABCDE and IJKLM-ring parts of 16k,o as well
as a method for the addition of the F-ring to the E-ring
part of CTX1B,1b,c which would also be available for the
CTX3C synthesis.6m Therefore, our recent efforts have
been focused on the construction of the middle part of
1 from the left (ABCDEF-ring) and the right (IJKLM-
ring) segments. Here, the convergent synthesis of the
common FGHI-ring part (2) of ciguatoxins is described.

Our plan for the synthesis of 2 from the F- and I-ring
parts (6 and 5, respectively) is outlined in Scheme 1.
The G-ring of 2 was envisioned to be constructed from
hydroxy ketone 3 by reductive cyclization forming the
O26–C31 bond and the C31 stereocenter.7,8 In the syn-
thesis of 3, establishment of the C30 quaternary stereo-
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center, closely related to the construction of the H-ring
part, was an issue. Therefore, we planned to employ
the 6-exo-epoxide-opening reaction of 49 for the H-ring
formation followed by inversion of the C29 stereocenter
and oxidation at C31. The epoxide 4 was intended to be
synthesized from E-iodoalkene 6 and aldehyde 5 via the
Nozaki–Hiyama–Kishi reaction10 followed by regio-
and stereoselective epoxidation. Both 5 and 6 would
be prepared from the previously reported medium-ring
ethers.6h,o

Preparation of the I-ring part 5 from known 76h,o is
illustrated in Scheme 2. Although direct PMB protection
of the hydroxy group at C34 of 7 was possible, the
resulting compound resisted the removal of the benzyl-
idene acetal without detachment of the PMB group.
Therefore, alcohol 7 was first transformed into pivaloate
8 (100%), which was converted to PMB ether 13 (overall
73%) by a five-step process [(i) removal of the benzyl-
idene acetal with Zn(OTf)2/ethanedithiol,

6m,11 (ii) pro-
tection of the resulting diol with 4-bromobenzyl (PBB)
bromide, (iii) detachment of the pivaloyl (Piv) group,
(iv) PMB-protection of the resulting alcohol, (v)
removal of the TBDPS group]. Oxidation of 13 with
Dess–Martin periodinane (DMPI)12 followed by Wittig
reaction afforded 14 (79%), which was hydrolyzed in
the presence of Hg(OAc)2 to produce 5 in good yield
(95%).13

The F-ring part 6 was synthesized from known 156h

(Scheme 3). Removal of the TBS groups of 15 (91%)
followed by protection with BnBr (90%) provided 17,
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Scheme 1. Synthetic plan for the common FGHI-ring part (2) of ciguatoxins.
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0 to 23 �C, 50 min; (h) Ph3P
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then aldehyde, �78 to 25 �C, 17 h, 79%; (i) Hg(OAc)2, THF–H2O
(10:1), 23 �C, 1 h, then Bu4NI, 1.5 h, 95%.
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748 A. Takizawa et al. / Tetrahedron Letters 47 (2006) 747–751
which was hydrolyzed to give 18 (98%). The primary
alcohol of 18 was selectively protected with PivCl
(80%), and the resulting 19 was transformed into 21
(overall 96%) by a two-step TBS-protection/Piv-detach-
ment process. Conversion of 21 to triflate 22 (96%) and
the subsequent reaction with 1-propynyllithium (97%)
afforded 23,14 which was treated first with a zirconium
reagent, prepared from Cp2ZrCl2 and DIBALH,15 and
then with I2 to produce 6 regioselectively (86%).

Connection of 5 and 6 as well as construction of the H-
ring is depicted in Scheme 4. According to the Nozaki–
Hiyama–Kishi procedure,10 the segments 5 and 6 were
treated with CrCl2 in the presence of NiCl2 (0.5 wt.%
of CrCl2) in DMSO, and the reaction smoothly pro-
ceeded to give 24 (45% from 5) and its C31-epimer 25
(40% from 5) in good yield.16 The epimer 25 could be
transformed into 24 in good yield and selectivity (overall
100%, 24:25 = 13:1) through oxidation with Dess–Mar-
tin periodinane (DMPI) followed by reduction with
L-Selectride�.17 The VO(acac)2-catalyzed epoxidation
of 24 with TBHP exclusively afforded 26 (91%),18 which
was subjected to a protection/deprotection sequence to
produce 4 (overall 95%). The hydroxy epoxide 4 was
smoothly cyclized with catalytic CSA into 28 (80%).
The stereochemistry at C30 of 28 was confirmed by
the presence of NOE between H34 and the protons of
the methyl group at C30. Thus, the I-ring 5 and the
F-ring 6 were efficiently assembled into the F-HI-ring
part 28 in overall 57% yield for total seven steps from 5.

The synthesis of 2 from 28 is shown in Scheme 5. First,
inversion of the stereochemistry at C29 of 28 was per-
formed by an oxidation/reduction process. Although
alcohol 28 resisted several oxidation reactions due to
steric hindrance around the hydroxy group at C29,
Swern oxidation19 of 28 at higher temperature (�45 �C)
for prolonged reaction time (1 h) was able to produce
an inseparable �5:1 mixture of ketone 29 and unreacted
28 in a good material balance (100%). The reduction of
29 to C29-epi-28 was not achieved in spite of several
attempts. Therefore, the reduction after detachment of
the TES group at O31 was then investigated. Treatment
of the mixture of 29 and 28 with HFÆPy slowly afforded
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an inseparable �5:1 mixture of hydroxy ketone 30 and
diol 31 (75%) along with a mixture of recovered 29
and 28 (�5:1, 25%). The reduction of the mixture of
30 and 31 with NaBH4 gave the desired diol 32 in 39%
yield along with 31 in 35% yield.20 The diol 31 was selec-
tively protected with TESOTf to provide 28 in quantita-
tive yield, thereby establishing the route for recycling
undesired 31. Next, selective but stepwise Bn protection
at O29 of 32 was executed. The diol 32 was exclusively
transformed into (2-naphthyl)methylene acetal 33. The
configurations at C29 and the acetal carbon of 33 were
confirmed by the presence of NOEs between the acetal
proton and H31 and between the acetal proton and
H29. Reduction of 33 with DIBALH exclusively affor-
ded (2-naphthyl)methyl (NAP)21 ether 34, which was
quantitatively converted to the requisite 36 through a
sequence of Bn protection at O29 and NAP deprotection
at O31. Alcohol 36 was oxidized with DMPI12 and the
resulting 37 was desilylated to give 3 quantitatively.
The reductive cyclization of 3 with excess Et3SiH in
the presence of TMSOTf at 0 �C produced 2 stereoselec-
tively (64%).7 The stereochemistry of 2 was confirmed
by the presence of ROE between H26 and H31 as well
as the large JH31–H32ax (12.1 Hz). Thus, the FGHI-ring
part 222 was successfully constructed from the F-ring 6
and the I-ring 5 in 9.5% overall yield over 17 steps
including the transformation steps from 25 to 24.

In conclusion, for the synthesis of the common FGHI-
ring part (2) of ciguatoxins, a method based on the
Nozaki–Hiyama–Kishi reaction connecting the F-ring
with the I-ring, regio- and stereoselective epoxidation,
the 6-exo-epoxide opening reaction forming the H-ring,
inversion of the C29 stereocenter, and reductive cycliza-
tion constructing the G-ring was successfully developed.
Further studies toward the total synthesis of ciguatoxins
are now in progress in this laboratory.
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